
$. Smith

Technical Report Series

TMCo71

TMC-71

Extracting Content Bearing Terms in Parallel
on the Connection Machine

Stephen Smith

Thinking Machines Corporation

245 First Street

Cambridge MA 02142

(617) 876-1111

ABSTRACT

The value of the Connection Machine System [1] for fast and precise retrieval

of relevant documents has already been demonstrated [2]. Sixteen thousand
newspaper articles can now be searched for 200 weighted search terms in about
60 milliseconds. This paper will discuss algorithms for processing text into
forms suitable for document search; specifically in developing fast methods

for extracting content-bearing terms from raw text via frequency information.
There are three main topics: 1. Creating a frequency dictionary from the raw

text. 2. Using the dictionary to classify terms in the raw text. 3. Marking
word boundaries and identifying proper nouns.

Paper-type: Full-Paper

Topic area: Perception and Signal Understanding - data interpretation

Track: Engineering

Keywords: Data Compression, Parallel Computing, Information Retrieval,

Connection Machine System

Extracting Content Bearing Terms in Parallel
on the Connection Machine

The Connection Machine System

The Connection Machine is a fine-grained parallel computer with a maximum configuration

of 65,536 processing elements. Each processing element contains 4,096 bits of memory and

a 1 bit wide ALU. All elements are connected via a 12 dimensional hypercube network

which contains 16 processing elements at each vertex. Any processor can communicate

with any other processor via this network.

A user can interface to the Connection Machine via a front-end machine; either a Sym-

bolics 3600 Series Lisp Machine or a Digital Equipment VAX. The original environments

of the front end machines are preserved so that a user can develop code with known tools

and within a familiar operating system. The programming languages for the Connection

Machine (currently an enhanced version of C and Common Lisp) are extended to include

functions appropriate for the Connection Machine.

An important parallel function that is referenced throughout this paper is Scan[31.

Scan makes use of the hypercube network to allow various functions to be performed on

many processors in logarithmic time. Thus a field within each processor could be summed

across all 65,536 processors in just 16 applications of plus.

Currently user callable functions in the scan family include PLUS-SCAN (for adding
values in many processors), COPY-SCAN (for copying a value from one processor to
many others), and MAX-SCAN (for finding the largest value in any of a large number of
processors). Additionally these functions allow for the specification of a segment bit that
delimits the start position of groups of processors across the machine. These groups can

then ha’~e the scan operations applied simultaneously (eg. sum within each of a number
of groups of processors at the same time). Segmented scans also require time on the order
of log n.

2 The Seed Document Retrieval System

The Seed Document Retrieval System currently.running on a 16k Connection Machine

rapidly searches a database of 3 months of news articles from the Reuters newswire (~:p-
proximately 16,000 articles = 32 Mbytes) [2]. To perform a search of the database for a
particular news topic a user employs two different methods. To initiate the search a user
inputs a number of key words he believes should be contained in documents relevant to

the current topic. Documents containing these words are then located in the database and

displayed in ranked order from most to least relevant. At this point the user can employ

a second method of search called "Relevance Feedback" [4].

By marking one or more of the documents returned from the initial query as either

GOOD or BAD, a user can further direct his search by informing the system as to which

documents are and are not relevant. The retrieval system then uses all the terms from the

marked documents as seeds to continue and refine the search.

The structure of the data on the Connection Machine can be simply visualized as one

newspaper article residing in each processor. The search proceeds by broadcasting each

word from the user’s query to all processors in parallel. Each processor then looks at the

document that it contains and determines whether the broadcast word is contained in the

document. If the word is in the document then the score of the document is increased;
this document score is used to determine the ranked ordering of documents once all the

terms have been broadcast.

The ultimate score of a document is determined by the weights of the words that it

contains. Each word being assigned a different weight value depending in large part on the

frequency with which the word appears in the database. For example assume a user starts

off his query with the terms "MARCOS", "HIDDEN" and "WEALTH" in looking for

articles concerning the secret assets of Ferdinand Marcos. Each of these words is assigned

a fairly high weight in that each is part of the initial query. "MARCOS" would be assigned

the highest weight since it does not occur very often in the database and thus is very helpful

in distinguishing between documents that do and do not pertain to this topic.

In the relevance feedback phase of the search all content bearing words in marked
documents are broadcast to the Connection Machine. This means that in an average

search (after 2 or 3 documents are marked good or bad) 200 or more words are broadcast

to the system - resulting in a much better search of the database. The weight of each word

in this phase is further influenced by whether it appears in a GOOD or BAD document;

words appearing in GOOD documents having a positive weight and those appearing only

in BAD documents having a negative weight.

3 Introduction To The Problem

In order for the Document Retrieval system to work as well as it does it is necessary for the

initial raw text to be processed through a number of conditioning steps before it is pla.ced

on the Connection Machine. The current size of our Reuters database is 140 Mbytes, thus

it is important that all pre-processing be performed as efficiently as possible.

3

The initial text received from the Reuters newswire is in a human readable ASCII

format. While this raw text fofrn is fine for people reading the newspaper, it is an inap-

propriate format for performing efficient searches on the Connection Machine. The raw

text form is also a space-inefficient way to store the data, in that a minority of the words

in the original text contain a majority of the information. Specifically words like "the"

and "a", prepositions (above, in, to, on), adverbs (always, very, never, however, moreover),

and auxilliaries (is, be, were, must, should) can be eliminated from the text with almost
no loss in performance. Thus compressing the initial data without loss of information is an

important task. The rea! problem then is in determining which words to save and which

words to throw out.

Data Compression Techniques

Initially data compression for the Document Retrieval System was performed serially on

a Symbolics 3600 c.omputer. The algorithms used were those developed for the ConText
Text Indexer and were meant more specifically for producing a human readable back-of-
the-book style index than for determining which of many individual words were and were

not content bearing. The compression algorithms described here are parallel and use very
few heuristics or "understanding" of sentence structure; instead relatively good results have
been obtained based primarily on word frequency information. These algorithms have the
further advantage that they are simple and easily implemented on a parallel machine.

To get an idea of how well frequency based indexing works look at a portion of a news
article from Reuters below. The words that are underlined are among the 30°-/0 least fre-

quent words and those that are in italics are among the 40% most common words.

ROME COURT OFFICIALS SET TO QUESTION BULGARIANS OAT POPE PLOT
Andrew Hurst

SOFIA., Bulgaria, Dec 20, t~euter - An Italian judge and prosecutor were due today to question two

Bulgarians accused of participating in a conspiracy to ki!__Jl Pope John Paul II. The accused, diplomats Todor

Aiva~,ov and Zhelyo Vassilev, are among three Bulgarians and three Turks on trial in Italy charged with

conspiring with Turkish gunman Mehmet All Agca to ki!__~l the pope. Aivazov and Vassilev are being tried

in their absence after Bulgaria refused to extradite them on the grounds of diplomatic immunity. They left

Italy in 1982, more than a year after Agca shot and wounded the pope in St. Peters Square or~ May 13,

1981.

By throwing out the top 40% most frequent words we can be fairly well assured that

n6 content bearing terms will be lost. It also appears that almost no non-content-bearing
terms are included in the 30% least common words. Words that fall between the top
30% and bottom 40% cutoffs can be subselected by noting whether they appear multiple

times in a given article (in the example article this can be seen in the word "pope" which

falls between the two cutoffs but is marked because it appears many times in the article).

When proper nouns are also marked we can be assured of having a high percentage of all

content-bearing terms and only a few non-content-bearing terms:

ROME COURT OFFICIALS SET TO QUESTION BULGARIANS ON POPE PLOT
By Andrew Hurst

SOFIA, Bulgaria, Dec 20, Reuter - An Italian judge and prosecutor were due today to question two

Bulgarians accused o/participating in a conspiracy to kil__Jl Pope John Paul II. The accused, diplomats Todor

Aivazov and Zhelyo Vassile~, are among three Bulgarians and three Turks on trial m Italy charged with

conspiring with Turkish gunman Mehmet All Agca to kil__Jl the pope. Aivazov and Vassilev are being tried

in their absence after Bulgaria refused to extradite them on the grounds of diplomatic immunity. They left

Italy in 1982, more than a year after Agca shot and wounded the pope in St. Peters Square on May 13,

1981.

These techniques can be enhanced by creating an explicit drop list (words like "the"

and "to" are almost never helpful), or creating a thesaurus of words that commonly occur
together - (thus "kill", "shot" and "wounded" could be noted as related and could thus be
retained in the example article). Morphological information can also be exploited to note,
for example, that "diplomats" and "diplomatic" are similar and that if one is considered

content bearing, then the other should be also.

5 Algorithms For The Connection Machine

To select content bearing terms via frequency it is first necessary to build a frequency
dictionary (a dictionary whose definitions contain the frequency of the given word in the
database). The dictionary is then used to assign frequency values to each word of the text.

In the future this dictionary will also contain morphological information and a thesaurus.

An overview of the content-bearing term extraction process is as follows:

I. Build the dictionary by processing all raw text:
1. Load the text to be processed onto the Connection Machine, with one

character per processor.

2. Note word breaks.
3. Accumulate all the characters of a word into a single processor.
4. Move these words into the dictionary.
5. Sort the dictionary alphabetically and then sum words that are identical.

II. Use the dictionary to mark content bearing words:
1. Reload the text with one character per processor.
2. Note word breaks and proper nouns.

3. Accumulate all the characters of a word into a single processor.

4. Move these words into the dictionary keeping a pointer to their original

location.

5. Copy-scan definitions to the new words.

6. Send the definitions back to the words at their initial positions.

7. Mark the content bearing terms by comparing their frequencies to the upper

and lower frequency cutoffs.

6 Building The Dictionary

A dictionary of words and information must be available on the CM in order to accu-
rately select terms via frequency. The dictionary described here has only two entries - the
word itself and the number of times the word appears in the given data base. A finished
dictionary looks like this with one word and its frequency stored in each processor:

proc.#

requency

0 1 2

the a tried

10000 5000 1000

1500

judge
oo,

lOO

65535

bulgarians

5

The initial text on the Connection Machine looks like this:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ...

ITlhlel IJ luldlglel It Ir Ii leldl It Ihlel IBlul
To determine beginings and endings of words in the text a sirnple heuristic is used: If

the character is a letter then it is considered to be part of a word. If a character is a hyphen

then it is part of a word only if the characters to either side of it are letters. Each processor

can check its own contents in parallel and it can check the contents of its neighbors by

using the hypercube communications network. The processor notes itself as part of a word

by setting one of its bits, the WORD-BIT, to 1. This bit can later be used for determining

the length of the word.

word-bit

text-char

left-nghbr.

right-nghbr.

0 1 2 3 4 5

1 1 1 0 1 1

The j u

The j

he j u d

6 7 8 9

1 1 1 0

d g e

u d g e

g e t

The technique for marking proper nouns is only slightly more elaborate than that of

marking word boundaries. Proper nouns are defined as those words that are capitalized

and are not preceded by either a period and a carriage return or a period and a space (this

heuristic will, of course, be specific to the text that is currently being processed). Thus by

having each processor look at itself and its two preceding neighbors it can accurately set

or clear a PROPER-NOUN bit.

To perform an alphabetic sort on the Connection Machine it is most efficient to sort

with one word per processor, thus the characters presently distributed across processors

must be accumulated into one processor. One way to do this is to perform a send for each

character in a word using the hypercube communications network. This method, however,

requires doing as many sends as there are characters in each word. Send is, however, a

relatively expensive operation and should be limited as much as possible. Another solution,

that requires only, log n sends is shown below. An understanding of this technique should

also shed light on how scan operates in log time.

Stack neighbors:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T h e j u d g e t r i e d t h e B u

h e j u d g e t r i e d t h e B u I

22 23 ...

Ig...

g a .,,

Stack neighbors 2 away:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T h e j u d g e t r i e d t h e B u I g
h e j u d g e t r i e d t h e B u I g a

e j u d g e t r i e d t he B u I g a r
j u d g e t ri e d t h e B u I g a r i

o.o

Continuing the stack in this way (1 2 4 8 ..) the final accumulated words would look

like this: _

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ...

T h e j u d g e t r i e d t h e B u I g ..

T j t t
h u r h
e d i e

g e

B

a

n
S

After these words have been set up they must be moved into the dictionary where they

are sorted alphabetically:

proc-#

requency

segment-bit

0 1 2 3 4 5 6 7 8

a bulgarians judge judge the the the tried tried

5000 1 500 1 10000 1 1 1000 1

1 1 1 0 1 0 0 1 0

Plus-Scan

Using the segmented plus-scan function sum up the number of ~imes a given word

appears in the dictionary:

proc-#

word

f requency

0 1 2

a Bulgarians judge

5000 1 500

3 4 5 6 7 8

judge the the the tried tried

501 10000 10001 10002 1000 1001

7 Using The Dictionary

Techniques used in propagating frequency values from dictionary entries to new words are

similar to those used in creating the dictionary [5]. All characters of each word must be

first accumulated into a single processor and this word then inserted into the completed

dictionary. In this case, however, a pointer to the word’s original location is moved with

the word.

Let us start from the point where the new words have already been inserted into

the dictionary. Note the dictionary entries do not have any value in their HOME field

(original address of the new word) and the new words to be defined have no value in their

FREQUENCY field. Again we perform an alphabetic sort but this time a one bit key field

is added to each word and its value is set to 1 in non-dictionary entries. Now when the

sort is performed it is assured that the dictionary entry is the first in any series of identical

words. It is important to have the dictionary entry precede the new word entries in that

to propagate the dictionary definitions to the new words a segmented copy-scan is used

(the segment start being set wherever the preceding word is different).

~roc.#

word

requency

home

sort.key

segment-bit

0 1 4

a bulgarians the

789O 22003

2O

a:O bulgarians:l the:O

1 1 1

2 3

judge judge

675 675

4

judge:O judge:l

1 0

Copy.Scan

5 6 7

the the tried

22003 22003 1452

0 16

the:l the:l tried:O

0 0 1

8

tried

1452

lO

tried:l

0

Finally the words with their values must be sent back to the processors that they

originated from via the home address that they have retained. Our original text should

now look something like this:

proc.# 0

requency
l 22003

4

j.udge tried

675 1452

10 16

i

][the

2O

Bulgarians

Now apply the upper and lower frequency thresholds marking a KEEP and DUMP

bits accordingly. To mark multiple occurrences of a given word that falls between the two

thresholds a segmented alphabetic sort is performed. Thus identical words within each

document are placed side by side. To determine multiple occurrences within a document

each processor looks to see if its neighbors are identical. If they are and the word contained

in the processor does not have its DUMP bit set then its KEEP bit is set.

8 Conclusion

Extraction of content b~aring terms from text can thus be performed efficiently on the

Connection Machine System. Further research on this extraction problem will most likely

center around the use of the current data structure of the frequency dictionary and its

related retrieval algorithms. Incorporating a thesaurus and morphological information

will hopefully produce a system capable of performing more challenging tasks in natural

langauage processing in the near future.

References

1. D. Hillis, The Connection Machine, MIT Press, Cambridge, Mass., 1985.

2. C. Stanfill and B. Kahle, "Parallel Free Text Search on the Connection
Machine System," Comm. ACM, Vol. 29 No. 12, Dec. 1986

3. D. Hillis and G. L. Steele, Jr., "Data Parallel Algorithms," Comm. ACM, Vol.

29, No. 12, Dec. 1986.

4. Salton, G. The SMART Retrieval System - Ezperiment in Automatic Document

Processing. Prentice-Hall, Englewood Clifs, N.J., 1971

5. G. Sabot, "Bulk Processing of Text on a Massively Parallel Computer," Proc.

2~th Annual Meeting of the Association]or Computer Linguistics, New York,

June 10-13, 1986, pp. 128-135

9

